|
|||||
|
Click here for information on how to order reprints of this article. | ||||
A Model for Angiogenesis
in HPV-Mediated Cervical Neoplasia Janice Matthews-Greer, PhDa, b Arrigo DeBenedetti, PhDc Angela Tucker, MSd Susanna Dempseya Destin Blackd Elba Turbat-Herrera, MDa, d, e aDepartment of Pathology bDepartment
of Pediatrics cDepartment
of Biochemistry dDepartment
of Obstetrics and Gynecology Louisiana State University Health Sciences Center 1501 Kings Highway Shreveport, LA 71130-3932
eDepartment
of Pathology Overton Brooks Veterans Medical Center, Shreveport, LA
KEY WORDS: HPV, HPV E7, HPV E6, HPV 16, HPV 18, cervical dysplasia,
cervical cancer, angiogenesis, VEGF, eIF4E ABSTRACT Almost all cervical cancers are associated
with human papillomaviruses (HPVs) belonging to the class of “high
(cancer)-risk” HPVs (e.g., HPV 16, HPV 18). This is thought to be
due to an increased expression of HPV oncogenes (E6 and E7) when HPV
is inserted into the host genome in addition to higher binding affinities
of E6 and E7 for tumor suppressor gene products, p53 and the retinoblastoma
protein (pRB), respectively–all properties of these high-risk types.
Angiogenesis has been studied in a variety of cancers, but none that
are so intimately associated with an oncogenic virus. Cervical cancer
progression and recurrence are associated with an increase in angiogenesis
and angiogenesis-promoting factors, such as vascular endothelial growth
factor F (VEGF). Our objective was to determine the efficacy of using
angiogenesis as a marker for cervical cancer and to determine what
role, if any, HPV infection might have in this process. We found that,
like other cancers, such as breast carcinoma, another angiogenesis-promoting
protein, eukaryotic translation initiation factor 4E (eIF4E) is increased
in cervical neoplasia. However, we also found elevations in eIF4E
and VEGF expression and increased mean vessel counts (MVC) in cervical
dysplasia as well as in carcinoma. Moreover, HPV-infected cell lines
transfected with eIF4E produce increased amounts of E7 oncoprotein
as compared with nontransfected cell lines. We conclude that HPV plays
a role in angiogenesis in cervical neoplasia. We propose eIF4E to
be a marker for early cervical cancer. In addition, we propose that
the HPV E7 protein plays a role in the eIF4E/c-myc cascade and, therefore,
is involved in the early events of angiogenesis. A model is suggested
for such an interaction between eIF4E and HPV E7. INTRODUCTION Cervical cancer is a leading cause of
morbidity and mortality worldwide. Widespread screening in affluent
countries has reduced the incidence of death due to the disease, but
nonablative treatment options are limited. Like hepatitis B virus-associated
liver cancer, cervical cancer has an infectious etiology. Almost all
cervical cancers are associated with persistent infection with certain
high-risk HPV types. These oncogenic HPVs can integrate into the host
genome. Their ability to cause cancer is believed to be due to both
an increased expression of HPV oncogene (E7 and E6) mRNA when HPV
is integrated into the host DNA1, 2 as well as an increased affinity
of the high-risk HPV types for the products of tumor suppressor genes.3
E7 binds to and inactivates pRB; E6 binds to and degrades p53.4 eIF4E is rate-limiting for the translation
of mRNAs with a high degree of secondary structure.5 Examples of this
class of “weak mRNAs” include those that play a critical role in growth
and differentiation,6 such as c-myc,7 the pro-angiogenic VEGF,8 and
that reported by Stacey et al,9 HPV E7. In turn, eIF4E is one of the
few transcriptional targets of c-myc,10 creating a positive feedback
loop between eIF4E and c-myc (eIF4E increases c-myc translationally,
whereas The association between
angiogenesis, angiogenic factors, and tumor dissemination has been
studied extensively in a variety of tumors.7,8,11–16 However, little
is known about the contribution of oncogenic viruses in this process,
particularly viruses such as HPV, which is deemed causally associated
with cervical cancer. Further study is necessary to elucidate the
role of angiogenesis during HPV-associated neoplasia. These data could
lead to new screening paradigms as well as new treatment modalities
for these cancers. It is suggested that the onset of angiogenesis
in cervical cancer occurs very early during premalignant stages17
and that an HPV oncoprotein may be responsible for this process.18
Angiogenesis also is reported to be predictive of cervical cancer
recurrence.19 These reports prompted us to believe it feasible that
VEGF and other angiogenic markers would be present in early HPV lesions.
Since HPV E7 upregulates c-myc, which upregulates eIF4E, which in
turn increases VEGF (and angiogenesis), we hypothesized that HPV E7
must upregulate angiogenesis in the infected cervix. Our objectives
were both to investigate the potential for angiogenic markers for
screening cervical neoplasia and to determine what role, if any, HPV
E7 oncoprotein might have in the angiogenesis process. MATERIALS AND METHODS Immunohistochemistry For eIF4E staining, a 1:200 dilution of
polyclonal rabbit anti-eIF4E (produced in the laboratory of ADB) was
used as a primary antibody. Staining intensity was analyzed using
Optimas Image Analysis software. The numbers of positively stained
cells in five high-power fields (40X) for each section were counted.
VEGF, HPV E6, and HPV E7 proteins were labeled with monoclonal antibodies
purchased commercially (rabbit anti-human VEGF from BioGenex Laboratories,
Inc. San Ramon, CA; mouse anti-HPV-16/18 E6 from Chemicon International,
Inc., Temecula, CA; and mouse anti-HPV-16 E7 from Zymed Laboratories,
So. San Francisco, CA). (HPV 16 is the most common type of HPV that
we see in our population; however, it is recognized that tissues infected
with HPV types other than HPV 16 may yield false negative results.)
Primary antibody dilutions were 1:100. Positive controls were CaSki
cells (HPV-infected); negative controls were sections incubated with
phosphate buffered saline in place of primary antibody. Staining intensities
within the epithelium were scored manually by two independent observers.
Granular staining was graded as 0231 and assigned corresponding numerical
counts (e.g., 1 for 11). The two counts obtained by
the two observers for each section were averaged, and these averages
were totaled for each diagnosis (e.g., normal, dysplasia, or carcinoma).
The reported mean stain intensity was the average of these total counts.
Mean
Vessel Counts At LSUHSC-S, we perform a high number of procedures for
the diagnosis and treatment of cervical disease. All of the tissues
removed are archived within the Department of Pathology. From these,
we chose paraffin blocks collected from women with the full range
of progressive histologic changes—normal, dysplastic, and cancer—to
measure angiogenesis. For measuring mean vessel counts, sections were
stained for CD34 using rabbit anti-CD34 (BioGenex) to enhance visualization
of newly formed vessels.20 Neovascularization was quantitated by two
investigators working in tandem and reported as the MVC using a Chalkley
UV/DF/TR eyepiece (Olympus America, Inc., Melville, NY) as described
previously.21 The sections were scanned first on low power (10X) to
find a representative area, prior to insertion of the Chalkley. The
eyepiece provides a random arrangement of dots. Any capillary vessel
touching one of the dots is counted. Each MVC represents the mean
count from 3 separate analyses. Transfection
of Cell Lines with an eIF4E Vector Immortalized cells, HeLa (H) containing integrated HPV
18, SiHa (S) containing integrated HPV 16, and HPV-negative cervical
carcinoma cells, C-33A (C), were obtained from the American Type Culture
Collection (Manassas, VA) and maintained as recommended. The eIF4E
vector (E) is a bacterial-mammalian cell shuttle vector previously
described22 and maintained in the laboratory of ADB. For eIF4E DNA
transfer, cells cultured to 60% confluence in MEM with 10% (v/v) FBS
were transfected with 20 to 30 µg of plasmid DNA using the Gene Porter
II reagent (Gene Therapy Systems, Inc., San Diego, CA). Selection
and maintenance was with Geneticin (Gibco Invitrogen Corporation,
Carlsbad, CA), 250 µg/mL and 50 µg/mL, respectively. eIF4E-transfected
HeLa, SiHa, and C33a cell lines are designated as HE, SE, and CE,
respectively. Gel
Electrophoresis with Amplified Western Blotting Cell lysates, prepared from cell lines as described,9
were assayed for total protein concentration using Bio-Rad Protein
Assay (Bio-Rad Laboratories, Hercules, CA). Standardized aliquots
of 30 µg/mL were subjected to sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) and the gels either silver stained
(Bio-Rad Silver Stain Kit) or transferred to polyvinylidene difluoride
membrane (PVDF) for amplified Western blots. Blots were reacted with
anti-HPV-18 E7 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) or
anti-c-myc antibody (Santa Cruz) and detected using the amplified
RADTM (Bio-Rad) protocol as described in the manufacturer’s
insert. Immunoprecipitation
of Cell Lysates with Specific Antisera Immunoprecipitation was performed using either anti-eIF4E
or anti-HPV-16 E7-agarose conjugated antisera (Santa Cruz) as suggested
by the manufacturer (Santa Cruz). Cell lysates were prepared from
100-mm plates of cells at 90% confluence (18 to 24 hours) in RIPA
buffer containing PMSF, aprotinin, and sodium orthovanadate using
a syringe with a 21-gauge needle. After incubation, a volume of lysate
equaling 100 µg total protein/mL (as determined by Bradford reagent
from Sigma-Aldrich Corp., St. Louis, MO) was treated with either 15
µL of anti-eIF4E or 5 µL of anti-HPV-16 E7-agarose (Santa Cruz). After
1 hour, 10 µL of protein G-agarose was added to the lysate containing
anti-eIF4E. Lysates were then incubated overnight. To the pellets,
40 µL of electrophoresis sample buffer was added and equal volumes
loaded onto the gel. Separated proteins on SDS-PAGE gels were either
silver-stained (for eIF4E detection) or transferred to nitrocellulose,
reacted with anti-HPV-16 E7 (Santa Cruz) followed by a secondary antibody
(anti-mouse-HRP, Santa Cruz) incubation, and visualized by chemiluminescent
development of X-ray film. RESULTS Markers of angiogenesis
are present in cervical dysplasia as well as carcinoma. As seen in Table 1, mean vessel counts were significantly
increased in early cervical neoplasia. Normal cervical tissues had
an average MVC of 6.91, compared with dysplastic or cervical carcinoma
tissues with a combined average of 9.52. Sections demonstrating dysplasia
also yielded higher MVC counts than normal tissues for that cohort.
Because angiogenesis was found in dysplastic tissues, these were tested
for additional markers of angiogenesis. In sections immunostained
with anti-eIF4E (Figure 1), eIF4E was found to be upregulated in dysplastic
cervix (Table 2). VEGF was also significantly increased in dysplastic
tissues as compared with normal; however, no difference was found
between VEGF stain intensities of dysplastic and cancerous cervix
(Table 3). There was an increase
in HPV E7 in cervical dysplasia as compared to normal cervical tissue. Potential correlation was found between these markers of angiogenesis
and HPV oncoprotein (E6 and E7) expression in tissue investigated.
Like mean vessel counts and stain intensities for eIF4E and VEGF cervical
dysplasias had significantly increased levels of HPV E7 staining over
that of normal tissues (Table 3). Stain intensity for HPV E6 was significantly
increased in carcinoma but not in dysplasia as compared with normal.
However, E6 staining differences between carcinoma and dysplasia were
not statistically significant. HPV E7 staining (Figure 2) was significantly
greater in both dysplasia and carcinoma as compared with normal (Table
3). HPV E7 is elevated
in cell lines overexpressing eIF4E. If E7 were increased by eIF4E, then both a mechanism for early angiogenesis
in cervical neoplasia as well as an additional explanation for the
causal relationship between HPV and squamous cell carcinoma could
be surmised. To investigate the possibility that eIF4E might upregulate
HPV E7 expression, HeLa, SiHa, and C33a cell lines were transfected
with an eIF4E DNA vector. Transfected cell lines were confirmed to
express the geneticin-resistance protein by SDS-PAGE (Figure 3A),
and to overexpress eIF4E (Figure 3B and 3E) as reported previously
for transfected HeLa cells.22 And, as expected from previous reports
indicating that elevated eIF4E generates an increase in c-myc protein,6
these transfected cell lines show an elevation in c-myc by amplified
Western blot (Figure 3C). C-33A cells, transfected and nontransfected,
failed to react with anti-E7 (data not shown). Analysis of transfected
HeLa cell lysates (Figure 3D) and transfected SiHa cell lysates (Figure
3F) shows an elevation of HPV E7 protein in those cell lines as determined
by amplified blot and immunoprecipitation, respectively. CaSki cell lines
could not be transfected successfully with eIF4E. Although the eIF4E-transfected C33A, HeLa, and SiHa
cells appear stable, eIF4E transfection of CaSki cells repeatedly
resulted in rapid cell death. DISCUSSION Previous reports indicate neovascularization
and markers of angiogenesis (eIF4E and VEGF) are increased in various
carcinomas not cervical in origin.7,8,12,14,16,23 A notable difference
between those cancers and cervical cancer is the presence of an oncogenic
virus in our patient population. Believing that one cannot discount
the potential contribution of HPV to the process of angiogenesis,
we began our investigation of both cervical dysplasias and carcinomas.
We conclude from these data that HPV, particularly HPV E7 protein,
might contribute to early neoplastic events in cervical tissue. eIF4E
is increased not just in cancer but also in early neoplasia in cervical
tissue (Table 2). Angiogenesis (measured as MVC in Table 1 and VEGF
staining intensity in Table 3) is also an early event. HPV is present
in these early lesions (Table 3). These experiments demonstrate that
cervical dysplasias had significantly increased levels of eIF4E, VEGF,
and HPV E7 over that of normal tissues (Tables 2 and 3). Staining
intensity for HPV E6 was significantly increased in carcinoma but
not in dysplasia (albeit the comparison between carcinoma and dysplasia
was not significant and the sample size is small). In contrast to
breast carcinoma, our data suggest eIF4E expression is increased significantly,
not just in carcinoma, but also in dysplastic tissue. Others also
have postulated that HPV infection increases the neovascularization
of tissue.24 This may be due to HPV infection, particularly E7 expression.
HPV E7 staining (Table 3) was significantly greater in both dysplasia
and carcinoma as compared with normal. Thus, if E7 were increased
by eIF4E, or the alternative, if eIF4E were increased by E7, then
an explanation of these data could be surmised. To investigate this
experimentally, we first addressed the possibility that eIF4E could
increase HPV E7 expression in cell lines. We find that eIF4E-overexpressing
(transfected), HPV-infected cells produce higher amounts of E7 than
cells that are not transfected. This is demonstrated in two cell lines,
one infected with HPV 18 (HeLa cells) and another infected with HPV
16 (SiHa cells) as measured by Western blots (Figure 3D) and immunoprecipitation
(Figure 3F), respectively. Thus, it appears that E7 can be upregulated
by eIF4E. These data are corroborated by the report of Stacey et al9
showing E7 to be dependent upon eIF4E for efficient translation. In
that report, E6 also was shown to be upregulated by eIF4E; however,
inasmuch as E6 lacks the mechanistic connection for acting to upregulate
eIF4E (described in the model in Figure 4), we believe that E7 may
hold the key to our observations. Although the eIF4E-transfected C33A,
HeLa, and SiHa cells appear stable, eIF4E transfection of CaSki cells
repeatedly resulted in rapid cell death. We interpret this rapid cell
death as a potential validation of our hypothesis. In our model, greatly
increased levels of HPV E7 should result in apoptosis. (The HPV copy
number of CaSki is greatly increased over that of SiHa and is higher
than in HeLa cells.) The E7 proteins of high-risk HPVs complex
with pRb, leading to pRb inactivation. In so doing, E7 disrupts the
ability of pRb to inhibit transcription factor E2F (its normal substrate),
thus releasing E2F.25 Once E2F is released, it is free to induce transcription
of growth-related proteins such as c-myc. Thus, E7 increases c-myc
transcriptionally. The relationship between E7 and c-myc overexpression
is reported in a variety of studies. c-myc has been demonstrated to
be significantly increased during cervical carcinogenesis and in primary
keratinocytes transfected with HPV oncogenes.13,26–28 c-myc is positively
correlated to cell proliferation in precancerous lesions.18 Oral keratinocytes
transfected with HPV-16 DNA have higher levels of c-myc mRNAs compared
with normal cells,29,30 and transformed cells requiring E7 for the
transformed phenotype can be maintained without E7 if an increase
in c-myc protein is present.31 It has been suggested
previously that the onset of angiogenesis in cervical cancer occurs
very early during premalignant stages17 and that an HPV oncoprotein
may be responsible for this process.18 Angiogenesis also is reported
to be predictive of cervical cancer recurrence.19 These data support
our findings. It is logical to expect that VEGF and other angiogenic
markers would be present in early HPV lesions. We find increased staining
intensity for VEGF and HPV E7 in addition to increased mean vessel
counts in early lesions (CIN 1), albeit the number of patients within
the subcategories of dysplasia precludes comparison between CIN 1
and later stages of dysplasia (i.e., CIN 2/3). Further immunohistochemical
studies, paired with HPV typing, on additional dysplastic blocks are
ongoing to investigate potential differences among CIN subcategories.
The early events of angiogenesis are difficult to dissect, but it
is known that eIF4E increases the translation of both VEGF and c-myc.
In addition, c-myc protein upregulates the transcription of eIF4E
overexpressing cells and E7 is a likely candidate for the class of
weak mRNA that requires excess eIF4E for efficient translation. Taking
these into account, and knowing that HPV E7 upregulates the transcription
of c-myc, we propose that HPV E7 acts very early in the process of
cervical neoplasia in the initiation and promotion of angiogenesis.
It is likely that both (a) HPV E7 increases the expression of eIF4E
via the increase in c-myc mRNA and that (b) eIF4E increases E7 protein
synthesis. Both of these actions occur in vivo to augment the initiation
of angiogenesis, and both are less likely in low-risk HPV infections
due to the reduction in the amount of E7 protein expressed in those
infections. We believe we have found evidence for eIF4E’s upregulation
of E7 and are currently investigating the effect of E7 on the level
of eIF4E. We find it possible that both events are occurring. We propose
a model (Figure 4) in which eIF4E upregulates E7 translationally and
E7 upregulates eIF4E transcriptionally through its action on c-myc.
The resultant increase in c-myc increases eIF4E, which further amplifies
the pathway. All of this culminates into an early increase in angiogenesis
through the action of eIF4E’s action on VEGF. CONCLUSION We began by investigating the possibility
of using eIF4E and other angiogenesis markers as a potential diagnostic
tool for HPV-associated neoplastic progression. We found these to
be increased in both carcinoma and dysplasia. We are intrigued by
the possibility that HPV E7 may contribute to angiogenesis and provide
evidence that E7 is increased by eIF4E overexpression. Although it
is difficult to delineate any single angiogenic stimulus for all cancers,
we believe HPV to be directly involved in the cervix. We propose that
E7 also effects an increase in eIF4E through the action of c-myc.
Since HPV E7 upregulates c-myc, which upregulates eIF4E, and since
eIF4E, in turn, increases VEGF (and angiogenesis), HPV E7 logically
would upregulate angiogenesis in the infected cervix. If substantiated,
novel therapies for cervical neoplasia could result. Then the contribution
of HPV and other oncogenic viruses should be investigated in other
cancers, particularly those in which HPV has been found. It is possible
that elevated MVCs may mark early HPV-induced neoplastic changes,
not just in cervix, but in all HPV-induced carcinomas (e.g., penile,
head and neck, vulva, vagina, anus). REFERENCES 1. Herber R, Liem A, Pitot H,
Lambert PF: Squamous epithelial hyperplasia and carcinoma in mice
transgenic for the Human papillomavirus type 16 E7 oncogene. J Virol
70:1873–1881, 1996. 2. Sanchez-Perez AM, Soriano
S, Clarke AR, Gaston K: Disruption of the human papillomavirus type
16 E2 gene protects cervical carcinoma cells from E2F-induced apoptosis.
J Gen Virol 78:3009–3018, 1997. 3. Barbosa MS: The oncogenic
role of human papillomavirus proteins. Crit Rev Oncogen 7:1–18, 1996. 4. Arends MJ, Buckley CH, Wells
M: Aetiology, pathogenesis, and pathology of cervical neoplasia. J
Clin Path 51:96–103, 1998. 5. Lazaris-Karatzas A, Sonenberg
N: The mRNA 5’ cap-binding protein, eIF-4E, cooperates with v-myc
or E1A in the transformation of primary rodent fibroblasts. Molec
Cell Biol 12: 1234–1238, 1992. 6. Kleijn M, Scheper GC, Voorma
HO, Thomas AAM: Regulation of translation initiation factors by signal
transduction. Eur J Biochem 253:531–544, 1998. 7. DeBenedetti A, Harris AL:
eIF4E expression in tumors: Its possible role in progression of malignancies.
Intl J Biochem Cell Biol 31:59–72, 1999. 8. Crew JP, Fuggle S, Bicknell
R, et al: Eukaryotic initiation factor-4E in superficial and muscle
invasive bladder cancer and its correlation with vascular endothelial
growth factor expression and tumour progression. Br J Cancer 82:161–166,
2000. 9. Stacey SN, Jordan D, Williamson
AJK, et al: Leaky scanning is the predominant mechanism for the translation
of human papillomavirus type 16. J Virol 74:7284–7297, 2000. 10. Raught B, Gingras A: Human papillomavirus
type 18 E1 protein is translated from polycistronic mRNA by a discontinuous
scanning mechanism. J Virol 73:3062–3070, 1999. 11. DeFatta RJ, Turbat-Herrera EA,
Li BD, et al: Elevated expression of eIF4E is confined in early breast
cancer lesions: Possible role of hypoxia. Int J Cancer 80:516–522,
1999. 12. Anthony B, Carter P, De Benedetti
A: Overexpression of the proto-oncogene/translation factor 4E in breast-carcinoma
cell lines. Int J Cancer 65:858–863, 1996. 13. Bourhis J, Le MG, Barrois M, et
al: Prognostic value of c-myc proteo-oncogene overexpression in early
invasive carcinoma of the cervix. J Clin Oncol 8:1789–1796, 1990. 14. Nathan CA, Liu L, Li BD, et al:
Detection of the proto-oncogene eIF4E in surgical margins may predict
recurrence in head and neck cancer. Oncogene 15:579–584, 1997. 15. Nathan CA, Franklin S, Abreo RW,
et al: Analysis of surgical margins with the molecular marker eIF4E:
A prognostic factor in patients with head and neck cancer. J Clin
Oncol 17:2909–2914, 1999. 16. Sorrells DL, Black DR, Meschonat
C, et al: Detection of eIF4E gene amplification in breast cancer by
competitive PCR. Ann Surg Oncol 5: 232–237, 1998. 17. Smith-McCune K, Zhu Y-H, Hanahan
D, Arbeit J: Cross-species comparison of angiogenesis during the premalignant
stages of squamous carcinogenesis in the human cervix and K14-HPV
16 transgenic mice. Cancer Res 57:1294–1300, 1997. 18. Dellas A, Schultheiss E, Leivas
MR, et al: Association of p27Kip1, cyclin E and c-myc expression with
progression and prognosis in HPV-positive cervical neoplasms. Anticancer
Res 18:3991–3998, 1998. 19. Wiggins DL, Granai CO, Steinhoff
MM, Calabresi P: Tumor angiogenesis as a prognostic factor in cervical
carcinoma. Gynecol Oncol 56:353–356, 1995. 20. Fina L, Molgaard HV, Robertson
D, et al: Expression of the CD34 gene in vascular endothelial cells.
Blood 75:2417–2426, 1990. 21. Weidner N, Carroll PR, Flax J,
et al: Tumor angiogenesis correlates with metastasis in invasive prostate
carcinoma. Am J Pathol 143: 401–409, 1993. 22. De Benedetti A, Rhoads RE: Overexpression
of eukaryotic protein synthesis initiation factor 4E in HeLa cells
results in aberrant growth and morphology. Proc Natl Acad Sci USA
87:8212–8216, 1990. 23. Li BD, Liu L, Dawson M, DeBenedetti
A: Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast
carcinoma. Cancer 79:2385–2390, 1997. 24. Doldi N, Origoni M, Bassan M,
et al: Vascular endothelial growth factor expression in human vulvar
neoplastic and non-neoplastic tissues. J Reprod Med 41:844–848, 1996. 25. Wattre P, Bert V, Hober D: Apoptosis
and human viral infections. Ann Biol Clin 54:189–197, 1996. 26. Pei XF: The human papillomavirus
E6/E7 genes induce discordant changes in the expression of cell growth
regulatory proteins. Carcinogenesis 17:1395–1401, 1996. 27. Pei XF, Sherman L, Sun YH, Schlegel
R: HPV-16 E7 protein bypasses keratinocyte growth inhibition by serum
and calcium. Carcinogenesis 19:1481–1486, 1998. 28. Sastre-Garau X, Favre M, Couturier
J, Orth G: Distinct patterns of alteration of myc genes associated
with integration of human papillomavirus type 16 or type 45 DNA in
two genital tumours.
J Gen Virol 81:1983–1993, 2000. 29. Kim MS, Shin KH, Baek JH, et al:
HPV-16, tobacco-specific N-nitrosamine, and N-methyl-N’-nitro-N-nitrosoguanidine
in oral carcinogenesis. Cancer Res 53:4811–4816, 1993. 30. Shin KH, Min
BM, Cherrick HM, Park NH: Combined effects of human papillomavirus-18
and N-methyl-N’-nitro-N-nitrosoguanidine on the transformation of
normal human oral keratinocytes. Molec Carcinogen 9:76–86, 1994. 31. Pim D, Banks L: Loss of HPV-16
E7 dependence in cells transformed by HPV-16 E7 plus EJ-ras correlates
with increased c-myc expression. Oncogene 6:589–594, 1991.
Table 1. Mean Vessel Counts of Tissue Sections Stained with CD34* Tissue Histology MVC Range
n P Value† Normal
6.91 5.0–10.0 6 Dysplasia
9.62 7.0–11.3 10 .008 Cancer
9.32 6.0–13.0 8 .017 *Three counts were performed for each slide.
This mean was then averaged for all of the sections within that category. †2-sample t-test, as compared with normal.
Table 2. Cumulative Staining Intensities
for Tissues Reacted with anti-4E
Count Mean Standard Error
P Value* Normal
10 14.5 7.0 Dysplasia
10 140.8 23.0 <.0001 Carcinoma
10 165.1 12.4 <.0001 *2-sample t-test, as compared with normal.
Table 3. Stain Intensity Meansa as Measured by Immunohistochemistry Stain Normal (n) Dysplasiab (n) P Valuec
Carcinoma (n) P Valuec
P
Valued VEGF 1.22 (9)
2.43 (7) .0091 2.33 (9) .0064 .8027e E6 0.2 (10) 0.75 (10) .09e 1.45 (10) .0003 .07e E7 0.5 (10) 1.60 (10) .0026 2.35 (10) .000001 .03
aMean stain intensity was determined by calculating the
average intensities as judged by two independent researchers using
a scale of 0–3+. bDysplasia
grades included 3 with CIN I, 2 with CIN II, and 5 with CIN III, including
3 with CIS. cMean stain intensity of dysplastic or carcinoma sections
versus normal mean stain intensity using 2-sample t-test. Values less
than or equal to .5 are considered significant differences. dMean stain intensities compared between dysplastic and
carcinoma tissues using 2-sample t-test. Values less than or equal
to .5 are significant. eNot significant.
Figure 1. Tissues Stained with Anti-4E: (A) normal cervical
tissue; (B) cervical dysplasia;
Figure 2. Representative Immunohistochemistry with antibody
to HPV: (A) invasive carcinoma stained
with anti-HPV E6 given a score of 11;
(B) invasive carcinomas stained with anti-HPV E7 given a score of
31. Note the deeper staining of the section given
a 31 score.
Figure 3. Transfected Cell Lysates. (A) Silver-Stained
SDS PAGE Gel of eIF4E-Transfected (H/E) and Non-Transfected (H) HeLa
Cell Lysates. A 33-KD band corresponding to the Geneticin resistance
protein is shown at the arrowhead. (B) Amplified Western Blot with
eIF4E-Transfected (C/E) and Non-Transfected (C) Cell Lysates Reacted
with Anti-eIF4E Antisera. A 25-KD band corresponding to eIF4E is shown
at the arrowhead. (C) Amplified Western Blot with eIF4E-Transfected
(H/E) and Non-Transfected (H) Cell Lysates Reacted with Anti-c-myc
Antisera. A 62-KD band corresponding to c-myc protein is shown at
the arrowhead. (D) Amplified Western Blot with eIF4E-Transfected (H/E)
and Non-Transfected (H) Cell Lysates Reacted with anti-HPV-18 E7 Serum. Molecular weight standards are found and well
designated with an asterisk. Note the elevated E7 band in the H/E
columns (represented by the arrowhead). (E) Silver-Stained SDS-PAGE
of Immunoprecipitation with Anti-eIF4E of eIF4E-Transfected (S/E)
and Non-Transfected (S) Cell Lysates. Overexpression of 4E is indicated
by the arrowhead in the well containing the S/E lysate as compared
to the S lysate. (F) Chemiluminescence-Developed X-Ray Film of Immunoprecipitation
with Anti-HPV-16 E7 of eIF4E-Transfected (S/E) and Non-Transfected
(S) Cell Lysates. The increase in E7 in the eIF4E-transfected cells
is noted by the arrowhead.
Figure 4. Model for HPV-mediated Angiogenesis in Cervical Neoplasia. Solid lines indicated published
information. Dashed lines indicate hypothesized events. 4E is eIF4E;
E7 is HPV E7.
| |||||
©2000-2013. All Rights Reserved. Veterinary Solutions LLC
|