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ABSTRACT
Hemophilia B is a recessive bleeding 

disorder resulting from mutations in the 
coagulation factor IX gene. As this disease 
is characterized by clinical and molecular 
heterogeneity, the building of relationship 
between its genotype and phenotype would 
be great helpful for better diagnosis, prog-
nosis and treatment. We use a descriptively 
probabilistic method, cross-impact analysis, 
to couple the changed primary structure of 
mutant human coagulation factor IX with 
the severity of hemophilia B with the help of 
the amino-acid distribution probability as a 
quantitative measure for mutation. Then we 
use the Bayesian equation to calculate the 
probability that the severity of hemophilia 
can be defined under a mutation. A patient 
has larger than 0.5 chance of being defined 
as severity of hemophilia B when a new 
mutation is found in coagulation factor IX. 
In this way, we take the first step towards 
further modeling of genotype-phenotype 
relationship in human coagulation factor IX.

INTRODUCTION
The coagulation factor IX precursor contains 
coagulation factor IXa light chain and heavy 
chain. After activation of coagulation factor 
IX to factor IXa, this enzyme interacts with 
the active cofactor form of factor VIII, to 
form a complex on membrane surfaces. This 
complex converts factor X to factor Xa [1]. 
Thus, the coagulation factor IX is one of 
critical components of the blood coagulation 
pathways, and its deficiency causes hemo-
philia B [2].

Hemophilia B is a recessive bleeding 
disorder that results from mutations in the 
coagulation factor IX gene on the X chro-
mosome [3-5]. It occurs in one of 30 000 
live male births in all populations [6, 7]. 
Major acute and chronic complications are 
often secondary to recurrent bleeding [8]. 
The unpredictable, recurrent, spontaneous 
bleedings mainly appear in soft tissues and/
or major joints. Recurrent bleeding in large 
joints usually leads to crippling arthropathies 
in a majority of severely affected patients.

The clinical severity of hemophilia 
B corresponds to the level of circulating 
coagulation factor IX. Severe hemophilia 
occurs in less than 1% of coagulation factor 
IX activity. With moderate hemophilia, 1 – 
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5% of coagulation factor IX activity, there is 
infrequent, spontaneous bleeding. The pres-
ence of at least 5% of coagulation factor IX 
seems to protect those with mild hemophilia 
against spontaneous bleeding [6, 8]. Each in-
dividual case of hemophilia is characterized 
by a series of unique parameters, emphasiz-
ing the variability and heterogeneity of this 
disease. These parameters include the mode 
of initial presentation, the baseline level 
of the clotting factor, and the presence or 
absence of a relevant family history [9].
Although the affected males are born to car-
rier females, up to 50% of cases appear de 
novo as a result of new mutations [10-12]. 
Approximately 1 000 unique mutations 
causing hemophilia B have been reported in 
humans [13-21]. Approximately 3% of he-
mophilia B patients have major deletions in 
the coagulation factor IX gene, half of which 
are complete [22].

As hemophilia B is characterized by 
clinical and molecular heterogeneity [23], it 
is important to find a way to connect the mu-
tations and their clinical outcomes together, 
by which we could approach to predicting a 
possibly clinical outcome when a mutation 
is found. For clinical manifestation, it is easy 
to consider its appearance/non-appearance 
as an event with two options, but it is hard 
to present a mutation, which can occur at 
different position with different amino acid 
at coagulation factor IX, as an event with 
limited choices. Without limited choices, it 
means that the coagulation factor IX needs 
to be represented as a number, then any mu-
tation would leads this number to change. In 
other words, we need to convert a 20-letter 
symbolized protein sequence into a numeric 
sequence in order to reach this above aim. 
Actually, there are currently several ways in 
doing so, for simplest example, we can use 
the physicochemical property of amino acid 
to replace each amino acid in a protein to get 
the numeric sequence, however the physi-
cochemical property of amino acid is not 
subject to mutation. 

Since 1999, our group has developed 
three approaches to doing this conversion 

(for reviews, see [24-26]), and our approach-
es are more suitable to study the mutations. 
In this study, we use our approach to build-
ing a descriptively probabilistic relation-
ship between mutated primary structure of 
coagulation factor IX and clinical severity of 
hemophilia B.

 Materials and methods
Data
The human coagulation factor IX precursor 
with total 145 mutations is obtained from 
UniProtKB/Swiss-Prot entry [27]. Of them, 
141 are missense mutations, 1 insertion and 
3 deletions.
Amino-acid distribution probability be-
fore and after mutation
The position of amino acid in a protein can 
be associated with probability, computed 
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2110    [28], where r is the 
number of amino acids, n is the number of 
partitions, rn is the number of amino acids in 
the n-th partition, qn is the number of parti-
tions with the same number of amino acids, 
and ! is the factorial function.

For example, there are fourteen gluta-
mines (Q) in normal human coagulation 
factor IX, positioned at 2, 57, 90, 96, 143, 
167, 185, 216, 219, 237, 241, 292, 370 and 
408. According to the equation above, we 
can imagine the coagulation factor IX as 14 
partitions with equal length, each contains 
33 (461/14 = 32.93) amino acids because 
the coagulation factor IX is composed of 
461 amino acids. Then, fourteen Qs have the 
distribution patterns as those in the second 
column in Table 1, whose amino-acid distri-
bution probability is r1 = 1, r2 = 1, r3 = 2, r4 
= 0, r5 = 1, r6 = 2, r7 = 2, r8 = 2, r9 = 1, r10 
= 0, r11 = 0, r12 = 1, r13 = 1, r14 = 0, and q0 = 
4, q1 = 6, q2 = 4, q3 = 0, q4 = 0, q5 = 0, q6 = 
0, q7 = 0, q8 = 0, q9 = 0, q10 = 0, q11 = 0, q12 
= 0, q13 = 0, q14 = 0, then
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 Any point mutation leads an amino acid 
to change to another one, which certainly 
changes the distribution pattern of both 
original and mutated amino acids, thus the 
amino-acid distribution probabilities will 
be different for both original and mutated 
amino acids in the normal and mutant co-
agulation factor IX.

For example, there is a mutation at posi-
tion 167 changing Q to histidine (H), then 
we have 13 Qs after mutation (column 4, 
Table 1), that is, 

r1 = 1, r2 = 1, r3 = 2, r4 = 1, r5 = 0, r6 = 2, r7 
= 3, r8 = 0, r9 = 1, r10 = 0, r11 = 1, r12 = 1, r13 
= 0, and q0 = 4, q1 = 6, q2 = 2, q3 = 1, q4 = 
0, q5 = 0, q6 = 0, q7 = 0, q8 = 0, q9 = 0, q10 = 
0, q11 = 0, q12 = 0, q13 = 0, then

Table 1. Glutamines and histidines and their probability before and after mutation at posi-
tion 167 in factor IX

Partition Before mutation After mutation
Glutamine (Q) Histidine (H) Glutamine (Q) Histidine (H)

I 1 1 1 1
II 1 0 1 0
III 2 0 2 0
IV 0 0 1 1
V 1 0 0 0
VI 2 2 2 0
VII 2 4 3 3
VIII 2 1 0 3
IX 1 2 1 1
X 0 1 0 2
XI 0 - 1 0
XII 1 - 1 -
XIII 1 - 0 -
XIV 0 - - -

Probability 0.1031 0.0286 0.1544 0.0539

Table 2. Computation on cross-impact analysis in Fig. 1

P(2) = 57/141 = 0.4043

          = 1 – P(2) = 1 – 0.4043 = 0.5957 = 84/141

          = 51/84 = 0.6071

          = 1 –             = 1 – 0.6071 = 0.3929 = 33/84

P(1|2) = 31/57 = 0.5439

           = 1 –P(1|2) = 1 – 0.5439 = 0.4561 = 26/57

           =            ×            = 51/84 × 84/141 = 0.3617 = 51/141

          =              ×            = 33/84 × 84/141 = 0.2340 = 33/141

P(12) = P(1|2) ×P(2) = 31/57 × 57/141 = 0.2199 = 31/141 

          =            × P(2) = 26/57 × 57/141 = 0.1844 = 26/141

( )2P
( )2|1P

( )2|1P ( )2|1P

( )2|1P
( )21P ( )2|1P ( )2P

( )21P ( )2|1P ( )2P

( )21P ( )2|1P



The Journal of Applied Research • Vol. 9, No. 3, 2009 103

For the mutated amino acid, there are 10 
Hs in normal coagulation factor IX and 11 
Hs in the mutant. Their distribution prob-
abilities are 0.0286 and 0.0539 before and 
after mutation, so the mutation increases the 
distribution probability of H.

Because this mutation increases the 
distribution probability of both the original 
and mutated amino acids, its overall effect 
obviously brings about an increment of the 
distribution probability in the mutant coagu-
lation factor IX, (0.1544 - 0.1031) + (0.0539 
- 0.0286) = 0.0766. Actually we have used 
this approach in many our previous studies 
[29-47].

In this manner, we have different num-
bers for different mutations in coagulation 
factor IX and their documented clinical 
manifestation, and we therefore can build a 
quantitative relationship between changed 
primary structure of coagulation factor IX 
and clinical severity of hemophilia B.

 Results and discussion
Currently, 141 mutations are documented 
with hemophilia B, among which 82 are 
defined as severity. Thus, we can use the 
cross-impact analysis to build a quantitative 

relationship between the increase/decrease 
of distribution probability after muta-
tions and the defined/undefined severity of 
hemophilia B, because the appearance/non-
appearance is an event with two options, and 
the mutation effect on coagulation factor IX 
is also an event with two options as in-
creased or decreased amino-acid distribution 
probability, while the cross-impact analysis 
is particularly suited for these [38, 48-53].

Figure 1 shows the cross-impact re-
lationship between coagulation factor IX 
mutations and their hemophilia severity. At 
the level of amino-acid distribution prob-
ability, P(2) and  are the decreased and 
increased probabilities induced by muta-
tions, and 57 and 84 mutations result in 
the distribution probability decreased and 
increased, respectively. At the level of he-
mophilia severity: (i)is the impact probabil-
ity (conditional probability) that the hemo-
philia severity is defined under the condition 
of increased distribution probability, and 51 
mutations have such an effect. (ii)is the im-

pact probability that the hemophilia 
severity is not defined under the condition 
of increased distribution probability, and 
33 mutations work in such a manner. (iii) 

P(1|2) is the impact prob-
ability that the hemophilia 
severity is defined under 
the condition of decreased 
distribution probability, 
and 31 mutations play 
such a role. (iv)   is the 
impact probability that the 
hemophilia severity is not 
defined under the condi-
tion of decreased distribu-
tion probability, and 26 
mutations fall into this 
category. At the level of 
combined events, we can 
see the combined results 
of mutations and disease 
severity.

Table 2 lists the 
computed probabilities 
with respect to Fig. 1, 

( )2|1P

2

Fig. 1. Cross-impact relationship among coagulation factor IX 
mutations, hemophilia severity, and combined results.

( )2P
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from which several interesting points can 
be found. (i) As is larger than P(2), a 
mutation has a large chance of increasing the 
distribution probability in mutant coagula-
tion factor IX. (ii) As is larger than 
, a mutation that increases the distribution 
probability has six tenths chance of being 
defined as the severity of hemophilia. (iii) 
As P(1|2) is slightly larger than  , a muta-
tion that decreases the distribution probabil-
ity has more than a half a chance of being 
defined as the severity of hemophilia.

From these probabilities, we can use the 
Bayes’ law [54],  , to determine 
the probability that the hemophilia sever-
ity defined under a mutation, which is P(1) 
in this equation. As P(2) and P (1|2) can 
be found in cross-impact analysis, while P 
(2|1 ) is the probability that the distribution 
probability decreases under the condition of 
hemophilia severity defined.

As P(1|2) = 31/57 = 0.5439 (Table 
2), and P(2|1)  = 31/(51 + 31) = 0.3780,  

namely, the patient 
has larger than 0.5 chance of being defined 
severity of hemophilia B when a new muta-
tion is found in coagulation factor IX.

In some sense, this study is somewhat 
similar to the currently popular analysis, 
genome wide association, the difference is 
that the single-nucleotide polymorphism is 
analyzed in genome wide association, while 
our association is a step ahead, because we 
have the probability that the occurrence of 
disease when a single-nucleotide polymor-
phism is found at protein level.
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